demo.tfliteΒΆ
ATTENTION: No need to quantize using acuity lite for quantized model
Download model:
#!/usr/bin/env python3
import tensorflow as tf
import numpy as np
from acuitylib.interface.importer import TFLiteLoader
from acuitylib.interface.exporter import TimVxExporter
from acuitylib.interface.exporter import OvxlibExporter
from acuitylib.interface.inference import Inference
# wget https://storage.googleapis.com/download.tensorflow.org/
# models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz
mobilenet = "model/mobilenet_v1_1.0_224_quant.tflite"
image0 = "data/697.jpg"
image1 = "data/813.jpg"
labels = [697, 813]
# data generator
def get_data():
for image in [image0, image1]:
arr = tf.io.decode_image(tf.io.read_file(image)).numpy().reshape(1, 224, 224, 3).astype(np.float32)
arr = (arr-128.0)/128.0 # preprocess
arr = np.rint(arr / 0.0078125) + 128 # quantize arr as quantized input for quantized model(begin from 6.27.0)
inputs = {'input': np.array(arr, dtype=np.uint8)}
yield inputs
def test_tflite_mobilenet():
# no need to quantize using acuity lite for quant model
# load tflite quant model
quantmodel = TFLiteLoader(mobilenet).load()
# inference with quant model
infer = Inference(quantmodel)
infer.build_session() # build inference session
for i, data in enumerate(get_data()):
ins, outs = infer.run_session(data) # run inference session
assert outs[0].flatten()[labels[i]] > 0.9
# export tim-vx quant case
TimVxExporter(quantmodel).export('export_timvx/quant/mobilenet')
# export nbg
OvxlibExporter(quantmodel).export('export_ovxlib/quant/mobilenet', pack_nbg_only=True)
if __name__ == '__main__':
test_tflite_mobilenet()